

Virginia Cooperative Extension

www.ext.vt.edu

2012 VIRGINIA ON-FARM SMALL GRAIN TEST PLOTS

A Summary of Replicated Research and Demonstration Plots Conducted by Virginia Cooperative Extension in Cooperation with Local Producers and Agribusinesses

CONDUCTED AND SUMMARIZED BY:

Keith Balderson, Extension Agent, Middle Peninsula David Moore, Extension Agent, Middle Peninsula Watson Lawrence, Extension Agent, City of Chesapeake Glenn Chappell, Virginia State University Chris Drake, Extension Agent, Southampton County Wade Thomason, Extension Grains Specialist, Virginia Tech Stephanie Romelczyk, Extension Agent, Westmoreland County

FINANCIAL ASSISTANCE PROVIDED BY: VIRGINIA SMALL GRAINS BOARD

Virginia Cooperative Extension programs and employment are open to all, regardless of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. An equal opportunity/affirmative action employer. Issued in furtherance of Cooperative Extension work, Virginia Polytechnic Institute and State University, Virginia State University, and the U.S. Department of Agriculture cooperating. Edwin J. Jones, Director, Virginia Cooperative Extension, Virginia Tech, Blacksburg; Jewel E. Hairston, Interim Administrator, 1890 Extension Program, Virginia State, Petersburg.

INTRODUCTION

The demonstration and research plot results discussed in this publication are a cooperative effort by four Virginia Cooperative Extension agents, extension specialists from Virginia Tech, and an assistant professor at the Virginia State University School of Agriculture. We are proud to present this year's on-farm small grain plot work to you. The 2011-12 small grain season was challenging. Wet conditions in the fall hampered planting and caused stand losses in some fields. Precipitation was well below normal and temperatures were well above normal for January through mid April. Dry conditions decreased tillering and overall growth of the crop. Widespread rainfall on April 22nd basically saved the crop. Some late season diseases developed in some fields. With July 2013 wheat futures prices currently trading over \$8.00 per bushel, the outlook for the 2013 crop is very good. We hope the information in this publication will help farmers produce a profitable crop.

The field work and printing of this publication are supported by the Virginia Small Grains Check-Off Funds. The cooperators gratefully acknowledge this support. Any small grain producer or agribusiness personnel who would like to receive of copy of this report should contact his/her local extension agent, who can request a copy from Keith Balderson in Essex County at 804 443-3551 or thbalder@vt.edu.

This is the nineteenth year of this multi-year project. Further work is planned for the upcoming growing season.

The authors wish to thank the many producers who participated in this project. Appreciation is extended to the seed, chemical, and fertilizer representative who donated products and/or assisted with the field work.

DISCLAIMER:

Trade and brand names are used for educational purposes only, and Virginia Cooperative Extension does not guarantee or warrant the standards of the product, nor does Virginia Cooperative Extension imply approval of the product to the exclusion of others which may be also be suitable.

TABLE OF CONTENTS

	Page
General Summary.	4
Small Grain Variety Plots	5-11
Soil Fertility Plots	12-15
Pest Management Plots and Observations	16-20
Tissue Testing Results.	21-23

GENERAL SUMMARY

A. VARIETY SELECTION: Variety selection remains one of the most important components of wheat production. We planted wheat variety demonstration plots in five locations in eastern and central Virginia. The Middlesex, Westmoreland, and Va. State University locations included the same varieties. Yields were low at the Virginia State location. Average of the varieties over the Westmoreland and Middlesex locations ranged from 78 bushels per acre to 100 bushels per acre. The top four varieties averaged over those two locations were Dyna-Gro 9042 at 100 bushels per acre, Shirley at 96 bushels per acre, Beck's 113 at 92 bushels per acre and Merl at 90 bushels per acre. Wheat variety plots in Chesapeake and Southampton included the same varieties. Average of the varieties over those two locations ranged from 79 bushels per acre to 103.5 bushels per acre with top varieties being Dyna-Gro 9053, Southern States 560, Southern States 5205 Agripro Oakes, and Pioneer 26R20.

B. SOIL FERTILITY PLOTS: In a plot evaluating organic carbon applied at 1 qt. per acre in the fall and twice in the spring, we did not get a yield response. In a plot evaluating the effect of soil pH on wheat, low soil pH resulted in a yield loss of over 10 bushels per acre. In a plot evaluating an application of zinc at .25 per acre, we got no yield response to zinc.

C. FUNGICIDE PLOTS: In a plot evaluating a .5 rate of Headline fungicide applied in the second nitrogen application, there was no yield response with yields over 100 bushels per acre. In two plots evaluating Prosaro fungicide applied at flowering, the fungicide treated plots yielded 3.5 bushels per acre more than the untreated plots. In one plot the yield difference was statistically significant, while at the other location the yield difference was statistically significant. Prosaro also increased test weight at the Middlesex location where test weights were recorded. Head scab was not an issue at either location.

D. TISSUE TESTING: Twenty-nine tissue samples were analyzed for nutrient content during the spring of 2012 in the Middle Peninsula. Many of these samples were taken as a part of trouble-shooting barley and wheat production problems. Sulfur was deficient in 1 sample, while manganese was deficient in 2 samples. From 2007-2012, two hundred thirteen tissue samples were submitted for full analysis. Seventeen samples were deficient in sulfur, nine samples were deficient in magnese.

2012 Southampton County Wheat Variety Evaluation Plot

Cooperators:	Producer: Chance Crowder
_	Extension: Chris Drake, Southampton County Extension Agent, ANR
Previous Crop:	Peanuts
Soil Type:	Uchee Loamy Sand
Tillage:	Disked, Planted w/ JD 1590 No-Till Drill on 7.5" spacing at 160#/acre
Planting Date:	11/25/11
Fertilizer:	300# 7-18-36 broadcast preplant, 25 gallons 24-0-0-38 on 2/25/12,
	15 gallons 24-0-0-3S on 3/8, 10 gallons 24-0-0-3S on 3/28
Crop Protection:	3/8 – 0.75 oz. Harmony, 3/28 – 1.9 oz. Karate, 6.5 oz Quadris
Harvest Date:	6/11/12 with Case 1688 Axial Flow Combine with 15 ft. platform

Variety	Test Weight	Moisture	Yield
-	(Lbs./Bu.)	(%)	Bu./A @13.5%
Agripro Branson	58.8	12.7	89.8
DG Shirley	60.1	12.2	81.2
DG 9053	57.4	12.2	113.1
DG 9042	58.0	12.5	80.7
USG 3555	59.5	12.6	102.8
Pioneer 26R22	59.8	12.5	76.0
Pioneer 26R20	60.6	12.3	103.2
SS 560	57.9	12.7	114.9
SS 5205	59.8	12.8	105.0
Agripro Oakes	59.9	12.9	95.1
GreatHeart 940	60.8	12.7	66.1
Agripro Cooper	60.6	12.5	76.0
AVG. ALL PLOTS			92.0

Discussion: The wheat performed excellent for the most part despite the late planting date. The weather was warm following planting that led to an excellent stand and good tillering. It benefited from a warm winter and early spring. Timely April rains led to some outstanding yields with several varieties. The Shirley plot had some deer feeding damage and yields would have been in the range of the best performing varieties otherwise. We harvested 200 foot long by 15 foot wide plots out of the 300' x 30' plots that were planted. This was a great test showing several potentially high yielding varieties to choose from when making planting decisions in 2012.

2012 Chesapeake Wheat Variety Plot

Cooperators:	Producer: Marvel Nicholas		
	Extension: Watson Lawrence - Chesapeake		
Previous Crop:	Corn		
Soil Type:	Chesapeake Fine Sandy Loam		
Tillage:	Disk followed by disk with culti-packer		
Planting Date:	October 27, 2011		
Fertilizer:	October: 8-13-33 @ 424 lbs./acre + 3.8 lbs. sulfur/acre		
	Late February: 32%Nitrogen @ 90 lbs. acre		
Crop Protection:	Herbicide: Harmony SG @ ³ / ₄ oz./acre		
Harvest Date:	June 20, 2012		

Variety	Test Weight	Moisture	Yield
	(Lbs./Bu.)	(%)	Bu./A@13.5%
Shirley	54	14.4	94.78
Dyna Gro 9042	59	14.3	94.55
Dyna Gro 9053	55	13.6	93.61
Oakes	58	16.1	93.04
Great Heart 940	60	14.9	92.37
Southern States 5205	59	14.4	91.64
USG 3555	58	15.4	91.20
USG 3665	51	15.1	89.31
Southern States 560	52	14.4	88.19
Cooper	58	14.5	87.99
Pioneer 26R22	59	14.2	87.24
Great Heart 933	55	13.7	86.81
Pioneer 26R20	59	14.4	85.21
Coker 9553	52	15.1	80.52

Discussion: We noticed in February the wheat crop was advancing physiologically ahead of normal. This was due to the unusually warm winter we experienced. There was some indecision whether to apply nitrogen in late February due to the fact we did not want to over advance the crop and cause freeze problems later if heads emerged too soon. But the crop was showing signs of needing nitrogen (yellowing) and dry field conditions presented an opportunity to get nitrogen on the crop. So nitrogen was applied about two weeks ahead of the normal calendar date to coincide with the advanced phase of the crop. This was a good decision because fields soon became wet in early March. The crop was already well tillered, but the early nitrogen probably increased tillers more to make this one of the best tillered crops in recent years. Powdery Mildew and other diseases did not present problems this spring. Cereal leaf beetles did not meet threshold in 2012 after large numbers were seen last year at this farm. Test weights were extremely variable even though there was plenty of rainfall in May when heads were maturing. The variety Shirley continues to be the best yielding variety for our area. Since Shirley was first planted in 2009, it has yielded first place twice and second place twice in my variety tests. All of the other varieties performed well this year also.

2012 Westmoreland County Wheat Variety Plot

Cooperators:	Producer: F.F. Chandler, Jr.
	Extension: Stephanie Romelczyk, ANR – Westmoreland
	Agribusiness: Participating Companies; Curtis Packett and Rusty Green, CPS
Previous Crop:	Corn
Soil Type:	Kempsville loam; Suffolk sandy loam
Tillage:	No-till
Planting Date:	November 11, 2011
Fertilizer:	30-50-70 in fall
	16-0-0-6 @ 250 lbs/A in late winter
	24-0-0-3 @ 250 lbs/A in early spring
Crop Protection:	Burndown: 3 pts/A Gramozone
-	0.4 oz/A Finesse
Harvest Date:	June 22, 2012

Variety	Test Weight	Moisture	Yield
	(Lbs./Bu.)	(%)	Bu./A @13.5%)
Beck's 113	58	11.4	77.91
Beck's 135	57	12.3	74.06
USG 3438	57	13.2	75.73
USG 3251	56	12.1	69.64
Dyna-Gro Shirley	57	11.9	79.11
Dyna-Gro 9042	58	12.2	83.78
VCIA Jamestown	58	11.7	66.49
VCIA Merl	58	11.9	74.99
Great Heart 933	56	11.6	81.31
Great Heart 940	58	11.6	71.85
Agripro Coker Branson	57	11.6	79.38
Agripro Coker Oakes	58	12.4	69.77
Southern States 8340	57	11.5	76.59
Southern States 8500	58	12.2	76.44

Discussion:

This wheat plot was planted somewhat late into heavy corn residue. Overall yields were relatively good. Use this and replicated data from the Small Grains in 2012 publication when selecting varieties to plant in 2012.

Middlesex Wheat Variety Comparison

Cooperator:	Producer:	Jason Benton	VCE Middle Deningula	
	Extension.	Britteny Mor	ing Summer Intern	
	Industry	Particinating	Seed Companies	
Previous Cron	Corn	1 articipating	Seed Companies	
Soil Type	Suffolk Fine	Sandy Loam		
Check Variety:	Southern Stat	es 5205		
Planting Equipment:	Great Plains	1590 NT into co	rn shredded mulch	
Row Snacing:	7 inches			
Fertilization:	Fall: 15-40-12	20-15s		
	Winter: 15-0-	0-1s with insect	icide	
	GS 25: 40-0-0)-4s		
	GS 30: 60-0-0)-78		
Crop Protection:	Burndown [.] G	lyphosate		
010 P 110 000	Winter: Fines	se. GS 25: Stara	ne Ultra	
	Mid-March: (Osprev. Floweri	ng: Prosaro	
Harvest Date:	June 25, 2012	2		
	Harvest Equ	ipment:	AGCO R62	
Variety	M%	TW	Yield@13.5%	%Check
SS 8404	14.1	59	104.3	100
Check (SS5205)	14.3	60	104.4	
SS 8500	14.0	59	92.3	90
Check	14.0	60	101.1	
SS 8340	14.1	60	85.7	82
Check	14.0	60	107.1	
Great Heart GHT-933	13.9	59	89.5	89
Check	14.1	60	93.0	
Great Heart GHT-940	13.8	61	84.1	87
Check	13.8	60	100.2	
Branson	14.0	60	95.6	96
Check	13.8	59	98.5	
Oakes	14.4	60	85.8	81
Check	14.0	60	112.5	
Beck's 135	13.9	60	100.2	93
Check	13.9	61	102.4	
Beck's 113	13.7	60	105.8	99
Check	13.4	60	110.4	
Dyna-Gro 9042	13.3	59	116.0	103
Check	13.4	60	115.2	
Dyna-Gro Shirley	13.4	59	113.0	98
Check	13.5	60	119.1	
Merl	13.5	60	105.0	97
Check	13.5	60	98.1	
Jamestown	13.5	61	112.1	110
Check	13.4	60	105.6	

USG 3251	13.7	60	106.6	102	
Check	13.3	60	103.0		
USG 3438	13.1	59	98.8	96	
Check	13.3	60	103.4		
Pioneer 26R20	13.4	60	93.2	95	
Check	13.4	60	92.0		
Pioneer 26R15	12.8	61	105.1	107	
Variety	Seed Tre	atment	Se	eds/Lb.	
Southern States 8404	Proceed/S	Storcide		1000 Mar 200 Mar	
Southern States 5205	Proceed/S	Storcide		11,690	
Southern States 8500	Proceed/S	Storcide		13,562	
Southern States 8340	Proceed/Storcide			12,803	
GHT 933	Untreated			16,900	
GHT-940	Dividend Extreme			14,600	
Branson	Dividend Extreme			12,288	
Oakes	Dividend Extreme			14,097	
Beck's 135	Escalate			11,690	
Beck's 113	Escalate			11,060	
Dyna-Gro 9042	Dyna Shi	eld-Awaken ST®		10,200	
Dyna-Gro Shirley	Dyna Shi	eld-Awaken ST®		11,100	
Merl	Dividend Extreme			12,750	
Jamestown	Dividend	Extreme		15,100	
USG 3251	VISOR 5			10,910	
USG 3438	VISOR 5			13,870	
Pioneer 26R20	Dividend	Extreme		12,500	
Pioneer 26R15	Dividend	Extreme		12,500	

- Escalate: Difenconazole, Metalaxyl, Dividend Extreme, Storcide
- Proceed: Metalaxyl, Prothioconazole, Tebuconazole

Dyna-Shield: Gaucho, Metalaxyl, Raxil

Awaken ST®: A complex of zinc ammonium acetate with potash and balanced micronutrient seed treatment package including boron, copper, iron, manganese, molybdenum and zinc.

- VISOR 5 Tebuconazole, Metalaxyl, Thiamethoxam, Imazalil (fungicide), Awaken ST®
- **Discussion:** This was a very good plot. Early maturing varieties may have had an advantage when things turned hot and dry around early April this year. The plot area for each variety was 14 feet wide and approximately 700 feet in length. Use this and other Virginia Tech small grain variety information when making planting decisions for 2013.

2011/12 Virginia State University Small Grain Variety Comparison

Cooperators:	Producer: Glenn F. Chappell
-	Glenn F. Chappell, II – Virginia State University
	Glenn F. Chappell, III – Virginia State University
	Scott Reiter – Virginia Cooperative Extension – Prince George
Previous Crop:	Corn
Soil Type:	Emporia Sandy loam
Tillage:	No-Till
Test/Plot Size:	300 ft x 30 ft per variety
Planting Equipment:	John Deere 1590 NT Drill
Planting Date:	November 12, 2011
Row Spacing:	7.5 inches
Variety:	Various
Seeding Rate:	25 seed/row ft
Crop Protection:	Herbicides: 1.0 oz of Harmony Extra – Mar. 13, 2012
	Fertilizer: 60 lbs of N – Feb. 1, 2012 & 50 lbs. of N Mar. 13, 2012
Harvest Date:	June 25, 2012
Harvest Equipment:	John Deere 6620

Brand	Variety	Moisture (%)	Yield Bu/A
USG	3251	14.2	40.1
VCIA	Jamestown	13.2	45.2
Agripro	Oaks	15.7	38.7
Southern S.	8500	14.1	45.9
USG	3438	13.1	41.2
Southern S.	8340	14.9	44.1
Great Heart	940	13.6	40.9
Great Heart	933	13.8	39.3
Dyna-Gro	Shirley	14.4	26.2
Agripro	Branson	12.9	29.1
VCIA	Merl	14.1	35.3
Becks	113	14.7	39.6
Dyna-Gro	9042	12.6	59.3
Becks	135	12.1	51.8

Discussion: Due to weather conditions the plot did not receive any fall nitrogen resulting in a low tiller production. Check varieties on either side of the plot were eliminated from the results due to wildlife damage. Compare these results with regional data to better choose wheat varieties.

Variety	Middlesex	Westmoreland	Mdsx/Wmlnd	Chesapeake	Southampton	Chspke/S. Hampton	Total
			Avg.			Avg.	Avg
Beck's 113	106	78	92				
Beck's 135	100	74	87				
USG 3438	99	76	87.5				
USG 3251	107	70	88.5				
USG 3555				91	103	97	
USG 3665				89			
Dyna-Gro Shirley	113	79	96	95	81	88	92
Dyna-Gro 9042	116	84	100	95	81	88	94
Dyna-Gro 9053				94	113	103.5	
VCIA Jamestown	112	66	89				
VCIA Merl	105	75	90				
Great Heart 933	90	81	85.5	87			
Great Heart 940	84	72	78	92	66	79	78.5
Agripro Branson	96	79	87.5		90		
Agripro Oakes	86	70	78	93	95	94	86
Agripro Cooper				88	76	82	
Coker 9553				81			
Southern States 5205				92	105	98.5	
Southern States 560				88	115	101.5	
Southern States 8340	86	77	81.5				
Southern States 8404	104						
Southern States 8500	92	76	84				
Pioneer 26R15	105						
Pioneer 26R20	93			85	103	94	
Pioneer 26R22				87	76	81.5	
Average	100	76	87	90	92	91	

2012 Virginia Cooperative Extension On-Farm Wheat Variety Plot Yield Summary (bu/A @ 13.5%)

2012 Carbon Application Test

Cooperators:	Producer: Robert Bland		
-	Extension: Keith Balderson, Middle Peninsula		
	Daniel Bowie, Summer Intern		
Previous Crop:	Corn		
Tillage:	No-Till		
Planting Date:	10/25/12		
Treatment:	Carbon applied at 1 qt. per acre in the fall and twice in the spring Soil Amending Ingredients:		
	Organic Carbon		
	Humic Acid		
	Total Other Ingredients		
Variety:	Jamestown		
Harvest Date:	6/11/12		

Treatment	Test Weight lbs./bu.	% Moisture	Yield bu./A @13.5%
With C 1	60	12.4%	59.6
Without C 1	60	11.9%	57.6
With C 2	61	12.3%	71.5
Without C 2	61	11.6%	72.3
With C 3	61	11.8%	77.0
Without C 3	61	11.8%	74.9
Average with C	60.7	12.2%	69.4
Average without C	60.7	11.8%	68.3

Discussion:

There is interest in using carbon as a supplement to current soil fertility programs. Carbon contributes to the formation of soil particles and plays an important role in the building of organic matter. Organic matter can assist with the water holding capacity of soils and the break-down of crop residue. In this plot 1 qt. per acre of a 1% liquid organic carbon and 2% humic acid product was applied at 1 qt. per acre in the fall and twice in the spring. There was no difference in yields.

2012 Effect of Low Soil pH on Wheat Yield Test

Cooperators:	Producer: Keith Balderson
	Extension: Keith Balderson, Middle Peninsula
	Daniel Bowie, Summer Intern
Previous Crop:	Corn
Soil Type:	Kempsville sandy loam
Tillage:	No-till
Planting Date:	October 14, 2011
Fertilizer:	36-90-90 per acre preplant; 8-0-0-9 per acre in early December
	February: 50-0-0-6 per acre; March: 50-0-0-6 per acre
Crop Protection:	Burndown: Gramoxone Inteon
•	Early December: Finesse and Tombstone
Variety:	Branson
Harvest Date:	6/08/12

Treatment	% Moisture	Yield bu./A
		@13.5%
Good pH 1	12.3%	87.4
Bad pH 1	12.4%	72.4
Good pH 2	12.4%	85.0
Bad pH 2	13.1%	79.3
Average Good	12.4%	86.2
Average Bad	12.8%	75.9

Discussion: With an abundance of "new" products available to use in crop production, we sometimes forget the importance of the "basics." Soil acidity remains one of the basics, and each year, extension agents find some fiends where crop yields are adversely affected by low soil pH. Low soil pH was found to be a problem in this seven acre field in November. There was a noticeable strip in the field where wheat growth was very poor. The crop did not emerge in some parts of the affected strip. A composite soil sample analyzed just prior to wheat planting showed a soil pH of 6.3. Samples taken from the good and bad areas of the field after the problem was discovered showed a soil pH of 4.4 from the bad area and 6.6 from the good area. At a soil pH of 4.4, Aluminum toxicity would be a major concern as shown by the pictures below. Two tons of lime per acre was applied to the bad area in January. This lime may have helped as yields from the bad area were actually better than we would have expected.

Figure 1. Effect of aluminum toxicity on wheat roots caused by low soil pH.

Figure 2. Effect of low soil pH on wheat following heading

2012 Effect of Zinc Application on Wheat Study

Cooperators:	Producer: Keith Balderson
-	Extension: Keith Balderson, Middle Peninsula
	Daniel Bowie, Summer Intern
Previous Crop:	Corn
Soil Type:	Kempsville sandy loam
Tillage:	No-till
Planting Date:	October 16, 2011
Fertilizer:	36-90-90 per acre preplant; 8-0-0-9 per acre in early December
	February: 50-0-0-6 per acre; March: 50-0-0-6 per acre; .25 lb. per acre zinc applied in early February on test plots
Crop Protection:	Burndown: Gramoxone Inteon
-	Early December: Finesse and Tombstone
Variety:	USG 3251
Harvest Date:	June 15, 2012

Treatment	Test Weight	% Moisture	Yield bu./A
	(Lbs./Bushel)		@13.5%
Zinc 1	58	16.0%	64.7
Check 1	58	16.6%	61.7
Zinc 2	58	15.9%	63.2
Check 2	59	14.9%	62.4
Zinc 3	56.5	15.1%	61.3
Check 3	58	15.5%	61.0
Average Zinc	57.5	15.7%	63.1
Average Check	58.3	15.7%	61.7

Discussion: Zinc availability in soils is dependent upon, zinc soil test levels, phosphorous soil test levels, and soil pH. In general, higher soil pH levels and higher soil phosphorous test levels, decrease zinc availability. Soil test results from a soil sample from this part of the field taken prior to planting wheat indicated zinc was needed for the wheat crop. A soil test taken from the plot area prior to establishing the plot in early February indicated that zinc was not needed in the plot area. Yields in this plot were reduced in part to ALS resistant chickweed which was not controlled until Starane was applied in the second spring nitrogen application.

2012 Half-Rate Fungicide Study

Cooperators:	Producer: Extension:	Jason Benton David Moore, VCE-Middlesex Brittany Moring, Summer Intern
Previous Crop:	Corn	
Soil Type:	Suffolk Fine Sar	ndy Loam
Tillage:	No-Till 1590 GI	P Drill
Planting Date:	October 15, 201	1
Fertilizer:	Fall 15-40-150-	15s
	Winter: 15-0-0-	1s
	February: 40-0-0	0-4s; March 60-0-0-7s
Crop Protection:	Burndown: Glyp	phosate
	Winter: Finesse,	, February: Starane Ultra
	Mid-March: Osj	prey, Flowering: Prosaro
Treatment:	¹ / ₂ rate (4 ounces	s) of Headline Fungicide with 2 nd N Application
Variety:	USG 3120	
Harvest Date:	June 26, 2012	

Treatment	Test Weight lbs./bu.	% Moisture	Yield bu./A @13.5%
With Headline 1	59	12.7	101.6
Without Headline 1	60	12.9	100.4
With Headline 2	60	12.8	98.5
Without Headline 2	59	12.7	101.3
With Headline 3	59	12.6	109.4
Without Headline 3	59	12.6	114.7
Avg. with Headline	59	12.7	103.2
Avg. without Headline	59	12.7	105.5

Discussion:

Practices among wheat growers include applying one-half the rate of fungicides at GS 30 which is applied with the second application of nitrogen in the spring. In this test, that application made no significant difference in yield, moisture, or test weight. There were reports of early season powdery mildew, which caused many growers to apply this practice. In most instances, this half rate application gives very little residual protection. Money spent on fungicides would be better spent closer to the time of heading and grain fill.

Use these and other Virginia Tech on farm plot results when making small grain production decisions for 2012-13.

2012 Middlesex Prosaro on Wheat Test

Cooperators:	Producer:	Jason Benton
	Extension:	David Moore, VCE-Middle Peninsula
		Brittany Moring, Summer Intern
Previous Crop:	Corn	
Soil Type:	Suffolk Fine Sa	indy Loam
Tillage:	No-Till	
Planting Date:	October 13, 201	11
Fertilizer:	Fall: 18-46-90;	December: 25-0-0-3
	Spring (1): 45-0)-0; Spring (2): 50-0-0
Crop Protection:	Burndown: Glyphosate	
	December: 2 ou	inces Warrior
	Spring (1): Fin	esse @ 3/10 ounces
	Early March: C	Osprey @ 4.75 ounces
	Early May: Pro	saro @ 8 ounces
Treatment:	Dividend Extre	me
Variety:	USG 3251	
Harvest Date:	June 15, 2012	

Treatment	Test Weight	% Moisture	Yield bu./A
	lbs./bu.		@13.5%
With Prosaro 1	62	14.4	118.4
Without Prosaro 1	60	13.9	113.3
With Prosaro 2	61	14.3	111.8
Without Prosaro 2	60	14.1	112.1
With Prosaro 3	61	14.2	109.6
Without Prosaro 3	61	13.7	104.4
Avg. with Prosaro	61.3	14.3	113.3
Avg. without Prosaro	60.3	13.9	109.9
LSD (0.10)	ns	0.3	ns

Discussion: During most of the grain flowering period, Head Scab pressure was low. Late in the period, temperatures stayed cool, moisture and humidity were higher than normal and we had some situations where making the decision to spray a fungicide for head scab was difficult.

In this test, even though the difference is over 3 bushels, the increase is not significant due to replication number 2 where there was no difference in yield. Please keep in mind that in a lot of fields, the spray tracks will probably decrease yield by 2-3 bushels, making this application pretty much a wash.

In looking at the use of a fungicide for scab over the past 4-5 years, it appears that the worst that can happen with this is breakeven. The best has been a 9 bushel increase. In all those cases, however, there has been an

increase in test weight. Use this and other replicated information when making future head scab spray decisions.

2012 New Kent Prosaro Plot

Cooperators:	Producer:	Davis Produce
	Extension:	David M. Moore, VCE Middle Peninsula
Previous Crop:	Corn	
Soil Type:	Pamunkey Lo	am
Tillage:	No Till	
Planting Date:	October 17, 2	011
Fertilizer:	30-80-80 Fall	
	45-0-0 Feb.; 6	50-0-0 March
Crop Protection:	Glyphosate B	urndown
-	2 oz. Dicamba	a Feb.; ³ / ₄ Oz.Harmony GT + insecticide-March
	Osprey @ 4.7	5 ounces
Treatment:	8 ounces Pros	aro on alternating strips at Flowering
Variety:	USG 3251	
Harvest Date:	June 8, 2012	

Treatment	% Moisture	Yield bu./A	
		@13.5%	
With Prosaro 1	17.0	99.0	
Without Prosaro 1	16.1	95.2	
With Prosaro 2	18.5	96.7	
Without Prosaro 2	16.8	94.8	
With Prosaro 3	16.7	96.0	
Without Prosaro 3	15.1	94.4	
With Prosaro 4	17.4	100.9	
Without Prosaro 4	15.3	94.5	
With Prosaro 5	17.3	102.4	
Without Prosaro 5	17.5	98.2	
Avg. with Prosaro	17.4	99.0	
Avg. without Prosaro	16.2	95.4	
LSD (0.10)	0.9	1.9	

Discussion: Once again, the 3-4 bushels increase by using this product for Head Scab protection. This is about a breakeven performance depending on tracking in field. The use of tramlines and aerial application may improve the bottom line. Test weight differences were not apparent in this plot; however, a noticeable difference existed in moisture. This product, and others like it, has proven to be a good weapon against the severity of Head Scab. Use this and other replicated on farm results when making plans for the 2012-13 crop.

Field Mouse Feeding on Wheat Stems

A field of wheat in Westmoreland County exhibited areas in the field with scattered "white" heads in mid-May. The damage was in clumps. In some cases, stems of wheat were cut up in small pieces and left on the ground in the clumps. "Chewing" damage was evident on the stems of the plants with the dead heads, and the damage almost always occurred just above the top node of the wheat plant. This damage was most likely caused by field mice.

2007 - 2012 Small Grain Tissue Sample Summary

Totals-2007	Ν	S	Р	К	Mg	Са	Na	В	Zn	Mn	Fe	Cu	Al
Very High	0	0	0	2	0	0	0	0	0	1	5	0	0
High	0	0	3	2	0	0	0	0	0	1	5	0	2
Sufficient	0	10	7	6	1	7	10	8	4	7	0	6	8
Low	8	0	0	0	9	2	0	2	2	1	0	4	0
Deficient	2	0	0	0	0	1	0	0	4	0	0	0	0
Total	10	10	10	10	10	10	10	10	10	10	10	10	10
Totals-2008	Ν	S	Р	К	Mg	Са	Na	В	Zn	Mn	Fe	Cu	AI
Very High	4	12	3	36	0	2	0	0	0	23	59	32	0
High	4	32	20	29	0	20	1	1	8	50	41	28	3
Sufficient	24	46	77	35	22	53	100	38	64	15	1	34	98
Low	71	4	1	1	71	26	0	56	26	5	0	7	0
Deficient	8	7	0	0	8	0	0	6	3	8	0	0	0
Total	111	101	101	101	101	101	101	101	101	101	101	101	101
Totals-2009	Ν	S	Ρ	К	Mg	Са	Na	В	Zn	Mn	Fe	Cu	Al
Totals-2009 Very High	N 0	S	Р 0	<u>к</u> 7	Mg 0	Ca 0	Na 0	B 0	Zn 0	Mn 1	Fe 13	Cu 0	Al 0
Totals-2009 Very High High	N 0 4	S 0 7	Р 0 3	К 7 7	Mg 0 0	Ca 0 3	Na 0 0	B 0 0	Zn 0 5	Mn 1 9	Fe 13 6	Cu 0 7	Al 0 0
Totals-2009 Very High High Sufficient	N 0 4 8	S 0 7 11	Р 0 3 15	<mark>к</mark> 7 7 5	Mg 0 0 14	Ca 0 3 15	Na 0 19	B 0 0 10	Zn 0 5 12	Mn 1 9 7	Fe 13 6 0	Cu 0 7 6	AI 0 0 19
Totals-2009 Very High High Sufficient Low	N 0 4 8 7	S 0 7 11 1	P 0 3 15 1	к 7 7 5 0	Mg 0 14 5	Ca 0 3 15 1	Na 0 19 0	B 0 10 9	Zn 0 5 12 2	Mn 1 9 7 0	Fe 13 6 0 0	Cu 0 7 6 6	Al 0 0 19 0
Totals-2009 Very High High Sufficient Low Deficient	N 0 4 8 7 0	s 0 7 11 1 0	P 0 3 15 1 0	к 7 5 0 0	Mg 0 14 5 0	Ca 0 3 15 1 0	Na 0 19 0 0	B 0 10 9 0	Zn 0 5 12 2 0	Mn 1 9 7 0 2	Fe 13 6 0 0 0	Cu 0 7 6 6 0	Al 0 19 0 0
Totals-2009 Very High High Sufficient Low Deficient Total	N 0 4 8 7 0 19	s 0 7 11 1 0 19	P 0 3 15 1 0 19	к 7 5 0 0 19	Mg 0 14 5 0 19	Ca 0 3 15 1 0 19	Na 0 19 0 0 19	B 0 10 9 0 19	Zn 0 5 12 2 0 19	Mn 1 9 7 0 2 19	Fe 13 6 0 0 0 19	Cu 0 7 6 6 0 19	Al 0 19 0 0 19
Totals-2009 Very High High Sufficient Low Deficient Total	N 0 4 8 7 0 19	s 0 7 11 1 0 19	P 0 3 15 1 0 19	к 7 5 0 0 19	Mg 0 14 5 0 19	Ca 0 3 15 1 0 19	Na 0 19 0 0 19	B 0 10 9 0 19	Zn 0 5 12 2 0 19	Mn 1 9 7 0 2 19	Fe 13 6 0 0 0 19	Cu 0 7 6 6 0 19	Al 0 19 0 0 19
Totals-2009 Very High High Sufficient Low Deficient Total Total	N 0 4 8 7 0 19 N	s 0 7 11 1 0 19 s	P 0 3 15 1 0 19 P	к 7 5 0 0 19 К	Mg 0 14 5 0 19 Mg	Ca 0 3 15 1 0 19 20 Ca	Na 0 19 0 19 19 Na	B 0 10 9 0 19 B	Zn 0 5 12 2 0 19 Zn	Mn 1 9 7 0 2 19 Mn	Fe 13 6 0 0 0 19 Fe	Cu 0 7 6 0 19 Cu	AI 0 19 0 19 0 19 19
Totals-2009 Very High High Sufficient Low Deficient Total Total Very High	N 0 4 8 7 0 19 19 N 20	S 0 7 11 1 0 19 9 S 0	P 0 3 15 1 0 19 19 P 13	К 7 5 0 0 19 К 19	Mg 0 14 5 0 19 Mg 1	Ca 0 3 15 1 0 19 19 Ca 1	Na 0 19 0 19 19 Na 0	B 0 10 9 0 19 B 0	Zn 0 5 12 2 0 19 Zn 0	Mn 1 9 7 0 2 19 19 Mn 2	Fe 13 6 0 0 0 19 Fe 23	Cu 0 7 6 0 19 19 Cu 4	AI 0 19 0 19 0 19 19 AI 0
Totals-2009 Very High High Sufficient Low Deficient Total Total Very High High	N 0 4 8 7 0 19 19 N 20 20 2	S 0 7 11 1 0 19 9	P 0 3 15 1 0 19 19 P 13 6	К 7 5 0 0 19 19 К 19 3	Mg 0 14 5 0 19 19 Mg 1 0	Ca 0 3 15 1 0 19 19 Ca 1 1	Na 0 19 0 19 19 Na 0 0	B 0 10 9 0 19 B 0 1	Zn 0 5 12 2 0 19 Zn 0 7	Mn 1 9 7 0 2 19 Mn 2 4	Fe 13 6 0 0 0 19 Fe 23 7	Cu 0 7 6 0 19 19 Cu 4 9	AI 0 19 0 19 0 19 AI 0 0 0
Totals-2009 Very High High Sufficient Low Deficient Total Totals-2010 Very High High Sufficient	N 0 4 8 7 0 19 19 N 20 2 5	S 0 7 11 1 0 19 19 S 0 9 11	P 0 3 15 1 0 19 19 P 13 6 11	К 7 5 0 0 19 19 8 8	Mg 0 14 5 0 19 19 Mg 1 0 22	Ca 0 3 15 1 0 19 19 Ca 1 1 21	Na 0 19 0 19 19 19 Na 0 0 22	B 0 10 9 0 19 B 0 1 8	Zn 0 5 12 2 0 19 Zn 0 7 13	Mn 1 9 7 0 2 19 Mn 2 4 13	Fe 13 6 0 0 19 19 Fe 23 7 0	Cu 0 7 6 0 19 19 Cu 4 9 14	AI 0 19 0 19 0 19 AI 0 0 29
Totals-2009 Very High High Sufficient Low Deficient Total Totals-2010 Very High High Sufficient Low	N 0 4 8 7 0 19 19 N 20 2 5 3	s 0 7 11 1 0 19 s 0 9 11 2	P 0 3 15 1 0 19 19 P 13 6 11 0	К 7 5 0 0 19 19 К 19 3 8 0	Mg 0 14 5 0 19 19 Mg 1 0 22 6	Ca 0 3 15 1 0 19 19 Ca 1 1 1 21 7	Na 0 19 0 19 19 Na 0 0 22 8	 B 0 10 9 0 19 B 0 1 8 13 	Zn 0 5 12 2 0 19 Zn 0 7 13 8	Mn 1 9 7 0 2 19 Mn 2 4 13 3	Fe 13 6 0 0 19 19 Fe 23 7 0 0 0	Cu 0 7 6 0 19 19 Cu 4 9 14 3	Al 0 19 0 19 0 19 Al 0 29 1
Totals-2009 Very High High Sufficient Low Deficient Total Totals-2010 Very High High Sufficient Low Deficient	N 0 4 8 7 0 19 19 19 20 2 5 3 0	S 0 7 11 1 0 19 19 S 0 9 11 2 8	P 0 3 15 1 0 19 9 P 13 6 11 0 0	К 7 5 0 19 19 3 8 0 0	Mg 0 14 5 0 19 19 Mg 1 0 22 6 1	Ca 0 3 15 1 0 19 19 Ca 1 1 21 7 0	Na 0 19 0 19 19 19 Na 0 0 22 8 0	B 0 10 9 0 19 B 0 1 8 13 8	Zn 0 5 12 2 0 19 Zn 0 7 13 8 2	Mn 1 9 7 0 2 19 Mn 2 4 13 3 8	Fe 13 6 0 0 19 19 Fe 23 7 0 0 0 0	Cu 0 7 6 0 19 19 Cu 4 9 14 3 0	AI 0 19 0 19 0 19 AI 0 29 1 0

Totals-2011	Ν	S	Р	К	Mg	Са	Na	В	Zn	Mn	Fe	Cu	AI
Barley													
Very High	0	0	0	4	0	0	0	0	0	0	3	0	0
High	2	2	3	0	0	4	0	0	1	2	0	0	0
Sufficient	2	3	2	1	5	1	5	1	3	2	2	3	5
Low	2	0	0	0	0	0	0	2	1	0	0	1	0
Deficient	0	0	0	0	0	0	0	2	0	1	0	1	0
Total	6	5	5	5	5	5	5	5	5	5	5	5	5
Wheat													
Very High	0	0	0	0	0	0	0	0	0	0	3	0	0
High	12	0	10	1	0	0	0	0	0	0	0	0	2
Sufficient	22	13	9	18	17	18	19	4	18	17	16	14	17
Low	0	6	0	0	2	1	0	13	1	1	0	5	0
Deficient	0	0	0	0	0	0	0	2	0	1	0	0	0
Total	34	19	19	19	19	19	19	19	19	19	19	19	19
Totals-2012	Ν	S	Ρ	К	Mg	Са	Na	В	Zn	Mn	Fe	Cu	Al
Barley													
Very High	0	0	0	0	0	0	0	0	0	0	0	0	0
High	2	0	0	0	0	3	0	0	0	1	0	0	0
Sufficient	1	3	5	5	4	1	4	5	5	4	5	5	4
Low	0	1	0	0	1	1	1	0	0	0	0	0	0
Deficient	2	1	0	0	0	0	0	0	0	0	0	0	1
Total	5	5	5	5	5	5	5	5	5	5	5	5	5
Wheat													
Very High	1	0	0	0	0	0	1	1	0	0	1	0	0
High	5	0	6	3	0	6	0	0	0	0	0	1	0
Sufficient	14	17	15	21	21	18	23	9	23	22	23	23	18
Low	2	6	3	0	3	0	0	14	1	1	0	0	6
Deficient	2	1	0	0	0	0	0	0	0	1	0	0	0
Total	24	24	24	24	24	24	24	24	24	24	24	24	24

Total Tissue Samples 2007-2012 Summary	N	S	Р	к	Mg	Са	Na	В	Zn	Mn	Fe	Cu	AI
		-			0								
Very High	25	12	16	68	1	3	1	1	0	27	107	36	0
High	31	50	51	45	0	37	1	2	21	67	59	45	7
Sufficient	76	114	141	99	106	134	202	83	142	87	47	105	198
Low	93	20	5	1	97	38	9	109	41	11	0	26	7
Deficient	14	17	0	0	9	1	0	18	9	21	0	1	1
Total	239	213	213	213	213	213	213	213	213	213	213	213	213